Tumor therapy with Amanita phalloides (Death Cap): stabilization of mammary duct cancer

Abstract
Molecular events that cause tumor formation enhance a number of HOX genes, called switch genes, coding for RNA polymerase II transcription factors. Thus, in tumor cells, RNA polymerase II is more active than in other somatic cells. Amanita phalloides contains amanitin which inhibits RNA polymerase II. Partial inhibition with amanitin influences tumor cell - but not normal cell - activity. To widen the treatment spectrum, dilutions of Amanita phalloides, containing amanitin, are applied to a patient with mammary duct cancer. For monitoring tumormarkers, different doses of amanitin are applied. The former duplication time of tumor growth represented three months; however within a period of 18 months the patient can be stabilized without further growth of the tumor. There are also no severe symptoms, no liver damage and no continuous erythrocyte deprivation. This new principle of tumor therapy shows high potential to provide a medical treatment.

Keywords
Amanita therapy, tumor therapy, breast cancer, mammary ducts cancer, hox genes, switch genes

Language
English

References
5. Expression of Anti-breast Cancer Monoclonal Antibody in Transgenic Plant
 Kim, Deuk-Su ; Shao, Yingxue ; Lee, Jeong-Hwan ; Yoon, Joon-Sik ; Park, Se-Ra ; Choo, Young-Kug ; Hwang, Kyung-A ; Ko, Ki-Sung

6. Effect of Hypoxia on the Doxorubicin Sensitivity of Human MCF-7 Breast Cancer Cells
 Lim, Soo-Jeong ; Kang, He-Kyung

7. Microarray Data Analysis of Perturbed Pathways in Breast Cancer Tissues
 Kim, Chang-Sik ; Choi, Ji-Won ; Yoon, Suk-Joon
 Genomics & Informatics, 2008. vol.6. 4, pp.210-222

8. Down-Regulation of CYP1A1 Expression in Breast Cancer
 Hafeez, S. ; Ahmed, A. ; Rashid, Asif Z. ; Kayani, Mahmood Akhtar

9. A Model for Community Participation in Breast Cancer Prevention in Iran
 Ahmadian, Maryam ; Samah, Asnarulkhadi Abu

10. siRNA Mediated Silencing of NIN1/RPN12 Binding Protein 1 Homolog Inhibits Proliferation and Growth of Breast Cancer Cells
 Huang, Wei-Yi ; Chen, Dong-Hua ; Ning, Li ; Wang, Li-Wei